

DNCQF.FDMD.GD03 Issue No.: 01

QUALIFICATION SPE	ECIFI	CATIO	N							
SECTION A										
QUALIFICATION DEV	/ELO	PER	Botswana International University of Science and Technology							
TITLE			Bachelor of Engineering (Honours) in				NCQF LEVEL	8		
			Chemical Engineering							
FIELD	Man	Manufacturing,			SUB-	FII	ELD	Enginee	ring and Engineering Trades	
	Eng	ngineering and		t						
	Tecl	chnology								
New qualification		✓ Review o		Review of	f existing qualification					
SUB-FRAMEWORK Gener		al E	ducation			TVET		Higher Education	✓	
Certifi		Certific	cate				Diploma	а	Bachelor	
Bache		nelor Honours		✓		Master		Doctorate/ PhD		
QUALIFICATION TYPE										
CREDIT VALUE					•	•		•	636	
DATIONALE AND DI	1000	A = A =		- <u> </u>	^ 					

RATIONALE AND PURPOSE OF THE QUALIFICATION

RATIONALE

The qualification of Bachelor of Engineering in Chemical Engineering at Botswana International University of Science and Technology is fundamental and strategic to the development of chemical and related industries in Botswana and the region. At present, BIUST is the only tertiary institute in this country that is training Chemical Engineers in response to the critical need and shortage of chemical engineers in Botswana particularly, the SADC region and the world in general [1]. The Human Resource Development Council (HRDC) report of 2016 lists Chemical Engineers as one of the top occupations in high demand in the Manufacturing sector and also highlights the need for continuous engagement with industry to develop graduates that are ready to address the ever changing needs of industry [2]. Chemical Engineering is one of the most employable subjects in the world today and is a multi-use degree producing graduates that are able to work in other sectors such as mining, water, biotechnology, finance, energy, occupational health and safety [1,3]. Thus, this qualification is also capable of addressing skills shortages in other key areas identified by the HRDC [1]. A study in done in Europe has highlighted that there has been a decline in the number of students studying chemical engineering as a result of a lack of understanding of the content of the discipline and career prospects [4].

01/07-06-2018 Page 1 of 12

DNCQF.FDMD.GD03 Issue No.: 01

The qualification will be able to supply the labour market with chemical engineers with skills that are essential for industrial development and beneficiation of natural resources such as minerals, chemicals and agricultural products.

The qualification is undertaking world class quality research and teaching that is problem oriented, interdisciplinary and relevant to society that will contribute towards business development in Botswana and the region. Unlike other engineering disciplines or professionals, Botswana does not currently train its own chemical, materials and metallurgical engineers but its economic development and sustainability depends largely on these professionals. The qualification aligns with the mission of the University as it focuses on energy, water, resources and process engineering which are critical for the sustainable development of Botswana as stipulated in the University's mission and vision statement.

PURPOSE OF QUALIFICATION

The purpose of this qualification is to produce graduates with highly specialized knowledge, skills and competences to:

- Design, optimise and manage construction of processes for the production of chemicals, fuels, metals and food products.
- Identify, diagnose and solve unpredictable industrial problems encountered with process equipment and product quality in the process industry.
- Apply advanced specialist knowledge to solve environmental problems related to the sustainable use of natural resources within the chemical and process industry.
- Implement and develop safety, health, environmental and quality (SHEQ) protocols and procedures in the chemical and process industry.

01/07-06-2018 Page 2 of 12

DNCQF.FDMD.GD03 Issue No.: 01

ENTRY REQUIREMENTS (including access and inclusion)

- The minimum entry requirement is Certificate IV, NCQF Level 4 (Botswana General Certificate of Secondary Education, BGCSE) or its equivalent with passes in Mathematics, Physics, Chemistry and English Language
- Recognition Prior Learning (RPL) and Credit Accumulation and Transfer (CAT) will be considered for entry to this qualification for applicants who do not meet the minimum entry requirement.

QUALIFICATION SPECIFICATION						
SECTION B						
GRADUATE PROFILE (LEARNING OUTCOMES)	ASSESSMENT CRITERIA					
1: Apply a range of highly specialized engineering	1.1. Interpret test results for raw materials and					
principles to systematically diagnose and solve	products to improve and optimise the process					
complex chemical and process engineering problems	to achieve required product specification for					
	customer satisfaction.					
	1.2. Use principles of mass and energy					
	balances, mass and heat transfer in					
	assessing and solving complex chemical and					
	process engineering problems for					
	sustainability and profitability.					
	1.3. Develop models to diagnose and solve					
	industry related problems					
2: Apply highly specialized knowledge of	2.1. Integrate principles from unit operations,					
mathematics, natural science and engineering	process control, environmental engineering					
sciences to defined and applied chemical and	and reaction engineering to achieve					
process engineering procedures, processes, systems	products meeting customer specifications.					
and methodologies to solve complex chemical and	2.2. Develop processes and/or procedures to					
process engineering problems.	produce materials, components and					
	products for various industrial specifications					
	and national development.					

01/07-06-2018 Page 3 of 12

DNCQF.FDMD.GD03 Issue No.: 01

3: Perform procedural and non-procedural design of	3.1. Develop flowsheets, and pipe and				
complex chemical and process components,	instrumentation diagrams (PID) according to				
systems, works, products or processes to meet	set standards to meet project objectives.				
desired needs normally within applicable standards,	3.2. Perform mass and energy balance on				
codes of practice and legislation.	processes for optimisation, sustainability and profitability.				
	3.3. Select appropriate materials, equipment				
	and standards to meet design specifications.				
	3.4. Perform costing and project evaluation.				
	3.5. Perform safety and loss prevention using				
	techniques such as HAZOP and process				
	plant site selection to meet legislative				
	requirements.				
4: Conduct investigations of <i>complex</i> chemical and	4.1 Formulate research objectives, research				
process problems through locating, searching and	questions and hypothesis to address				
selecting relevant data from codes, databases and	industrial problem.				
literature, designing and conducting experiments,	4.2 Search and compile relevant data using				
analysing and interpreting results to provide valid	codes, databases and literature to address a				
conclusions.	specific industrial problem.				
	4.3 Plan and conduct plant trials addressing				
	specific industrial problem.				
	4.4 Analyse results from plant trials and				
	laboratory experiments to address specific				
	industrial problem.				
	4.5 Draw conclusions from results, and				
	4.6 Identify limitations and make appropriate				
	recommendations.				
5: Apply advanced specialist knowledge in	5.1 Select appropriate techniques, resources and				
engineering methods, skills, tools, including	modern engineering tools (engineering				
Information technology	softwares) to solve industry related problems.				

01/07-06-2018 Page 4 of 12

DNCQF.FDMD.GD03 Issue No.: 01

	Teories and the second second
	5.2 Understand the constraints of using different
	engineering application packages when
	solving industry related problems.
	5.3 Use appropriate packages or softwares to
	predict and model complex chemical and
	process engineering industry problems
6: Communicate professional and technical	6.1 Use oral and written communication
information to stake holders and the community at	effectively with engineering audiences and
large	stack holders.
	6.2 Report results obtained from procedural
	work, research and design projects in a
	professional manner.
	6.3 Explain accurately the impact of engineering
	activities to relevant stack holders.
7: Demonstrate advanced specialist knowledge and	7.1 Monitor industrial processes on the society
understanding of the impact of Chemical Engineering	and the environment.
activities on the society, economy, industrial and	7.2 Identify the impact of industrial processes on
physical environment, and address issues by	the society and environment.
analysis and evaluation.	7.3 Evaluate the environmental and socio-
	economic factors of Chemical and Process
	Engineering processes.
	7.4 Use engineering and scientific tools such as
	environmental impact assessments and life
	cycle assessments to Chemical and Process
	Engineering processes.
8: Demonstrate advanced specialist knowledge and	8.1 Implement quality planning in project
understanding of engineering management principles	management.
and apply these to one's own work, as a member and	8.2 Apply risk and value management in decision
leader in a team and to manage projects.	making.
	8.3 Demonstrate good leadership (e.g.
	delegation and coordination) in project
	planning and execution.

01/07-06-2018 Page 5 of 12

DNCQF.FDMD.GD03 Issue No.: 01

	8.4 Work as a member of a team and/or lead a			
	team in planning and executing individual or			
	group project(s).			
	8.5 Take responsibility and accountability in the			
	tasks/project as a team member/team leader.			
9: Demonstrate mastery in being able to engage in	9.1 Work independently on projects to achieve a			
independent and life-long learning through well-	desired objective.			
developed learning skills.	9.2 Show competency when executing assigned			
	industrial tasks/activities.			
	9.3 Exercise autonomy, initiative and authority in			
	planning and executing projects.			
10: Apply ethical principles and commit to	10.1 Adhere to ethical principles and			
professional ethics, responsibilities and norms of	professional ethics, responsibilities and			
engineering technology practice	norms of engineering practice in executing			
	projects.			
	10.2 Observe social responsibilities when			
	executing project(s).			
	10.3 Uphold professional integrity in an impartial			
	manner.			
11: Demonstrate highly specialized knowledge and	11.1 Perform cost estimation for project(s).			
understanding of economic decision-making.	11.2 Implement cost optimisation in decision			
	making process.			

QUALIFICATION STRUCTURE							
SECTION C							
FOUNDATIONAL	Title	Level	Credits				
COURSES	Introduction to Technical Communication and Academic	5	6				
Subjects / Units /	Literacy						
Modules /Courses	General Chemistry I	5	12				
	Introduction to Computing	5	12				
	Pre-Calculus	5	12				

01/07-06-2018 Page 6 of 12

DNCQF.FDMD.GD03 Issue No.: 01

	Introduction to Physics I	5	12
	General Chemistry II	5	12
	Introductory Calculus	5	12
	Introductory Physics II	5	12
	Introductory Physics II	5	12
	introductory statistics	3	12
ELINID A MENTA I	Tido	Lavial	One dite
FUNDAMENTAL	Title	Level	Credits
COMPONENT	Engineering Graphics	5	12
Subjects / Units /	Workshop Practice	5	12
Modules /Courses	Introduction to Engineering	5	6
	Technical and Professional Communication	5	6
	Procedural Programming	5	12
	Engineering Mathematics I	5	12
	Engineering Mechanics I (Statics)	5	12
	Material Science	6	12
	Introductory Physical Chemistry	5	12
	Fundamentals of Electrical Engineering I	6	12
	Engineering Mathematics II	5	12
	Design Methods	5	6
	Strength of Materials	6	12
CORE	Process Engineering I	6	12
COMPONENT	Unit Operations I	6	12
Subjects / Units /	·	6	12
Modules /Courses	Research methods for Engineering and Technology		
wiodules /Courses	Unit Operations II	6	12
	Process Control I	6	12
	Process Engineering II	6	12
	Engineering Mathematics III	6	12
	Thermodynamics I	6	12

01/07-06-2018 Page 7 of 12

DNCQF.FDMD.GD03 Issue No.: 01

	Process Control II	6	12
	Chemical Engineering Thermodynamics	6	12
	Chemical Reaction Engineering	6	12
	Process Engineering Management	6	12
	Engineering Mathematics IV	6	12
	Engineering Project Management	6	12
	Separation Processes	7	12
	Membrane Separation & Bioprocess Technology	7	12
	Plant and Equipment Design	7	12
	Particulate Systems	7	12
	Environmental Engineering	7	12
	Economics, Business & Entrepreneurship	7	12
	Industrial Training	7	36
	Reactor Design	8	12
	Process Modelling, Simulation & Optimisation	8	12
	Chemical, Materials & Metallurgical Engineering	8	24
	Research Project (I & II)		
	Chemical, Materials & Metallurgical Engineering Design	8	36
	Project (I & II)		
	Chemical Engineering Health & Safety	8	12
OPTIONAL	Process Dynamics & Control	8	12
COMPONENT	Hydrometallurgy & Electrometallurgy	7	12
Subjects / Units /	Coal & Waste Valorization	8	12
Modules /Courses	Advanced Environmental Engineering	8	12
DILLES OF COMPIN	ATIONS, CREDIT DISTRIBUTION (where applicable):		

RULES OF COMBINATIONS, CREDIT DISTRIBUTION (where applicable):

Minimum Credits to graduate = 636

Core credits = 372

01/07-06-2018 Page 8 of 12

DNCQF.FDMD.GD03 Issue No.: 01

ASSESSMENT	
ASSESSMENT AND MODERATION ARRANGEMENTS	
3	
To graduate, a student must:	
Important:	
Credits at level 8 = 120	
Credits at level 6 and 7 = 312	
Credits at level 5 = 204	
2.00th of optional ordate 2.1	
Elective/Optional credits = 24	
Fundamental credits = 240	

All assessments, formative, summative, research and others (mostly work integrated learning) leading/contributing to the award of credits or a qualification should be based on learning outcomes and/or sub-outcomes. The qualification assessments are based on the following:

Coursework/Formative/CA	Summative	Research	Others
34%	51%	9%	5%

01/07-06-2018 Page 9 of 12

DNCQF.FDMD.GD03 Issue No.: 01

MODERATION

For quality assurance purposes, there will be internal and external moderation as per ETP policy.

Assessors and moderators must have valid registration and accreditation with Botswana Qualifications Authority (BQA) or recognized professional body.

RECOGNITION OF PRIOR LEARNING (if applicable)

RPL and CAT will be considered for the award of this qualification.

PROGRESSION PATHWAYS (LEARNING AND EMPLOYMENT)

Vertical Pathway

Possible vertical articulations:

Masters of Engineering in Chemical Engineering

Masters of Business Administration.

Horizontal Pathway

Possible horizontal articulations:

- · Postgraduate Diploma in Mechanical Engineering,
- Post Graduate Diploma in Engineering Management.

Employment Pathway

Possible employment articulations:

- Chemical engineer
- · Process engineer
- Safety, health, environmental and quality (SHEQ) engineer
- Research and development (R&D) engineer
- Design engineer
- Environmental process engineer

01/07-06-2018 Page 10 of 12

DNCQF.FDMD.GD03 Issue No.: 01

- · Product and development engineer
- Product engineer
- Project manager

QUALIFICATION AWARD AND CERTIFICATION

Minimum standards of achievement for the award of the qualification

A candidate is required to achieve the minimum stipulated total credits of 636 credits in order to be awarded a Bachelor of Engineering in Chemical Engineering. The candidate must also attain and fulfill all the rules of combination required for this qualification.

Certification

Candidates meeting prescribed requirements will be awarded the certificate in accordance with standards prescribed for the award of the qualification and applicable policies.

REGIONAL AND INTERNATIONAL COMPARABILITY

The qualification is benchmarked against a regional qualification at the University of Cape Town (South Africa) Bachelor of Science in Engineering (Chemical Engineering) and two international programmes at the University of Birmingham (UK) Bachelor of Engineering in Chemical Engineering, as well as the Bachelor of Engineering (Honours) in Chemical Engineering from the University of Queensland (Australia).

The qualifications differ in terms of duration, the one offered at the University of Cape Town (UCT) and University of Queensland (UQ) have a 4- year duration, while the University of Birmingham (UB-UK) is 3 years with an option of 4 years which includes one year of Industrial Study. The duration of this qualification is 5 years. In terms of total credits for the course, there are approximately 600 credits for the courses offered at UCT and UQ which is comparable to what is offered in this qualification (660 credits), however, the UB-UK programme has 350 credits. The minimum credits to graduate at UCT is 576 and for UQ its 560. which is within ±15% of the credits required in this qualification. However, for candidates coming in with a Certificate 5 qualification, the total credits required to graduate is 558 which is within ±5% of the credits required to graduate at UCT and UQ. The major difference with the UB-UK programme is that it focuses mainly on core chemical engineering courses and does not cover much of the basic science courses (mathematics, physics, chemistry, biology and computer science that are covered in the first two years at similar programmes at UCT, UQ and BIUST. However, this qualification covers more of the entry level basic sciences in the first year of study which are covered at High School level in the United Kingdom,

Australia and South

01/07-06-2018 Page 11 of 12

DNCQF.FDMD.GD03 Issue No.: 01

Africa. For this qualification these modules are classified as foundational level courses and are not required for applicants with a Certificate 5 qualification, which is a typical entry level requirement at UCT and UQ.

In terms of the courses taught all the qualifications cover the core chemical engineering courses namely: Thermodynamics/physical chemistry; Fluid mechanics/transport phenomena; Unit operations; Chemical reaction engineering; Plant design; Equipment/materials; Process dynamics and control; Chemical engineering laboratory and Safety and environment. All the programmes with the exception of the one offered by UB-UK cover a significant amount of basic sciences in the first two years of study. All the programmes offer specialisation in the advanced electives in emerging and existing chemical engineering fields, however, these vary depending on institutional focus. All the qualifications require some form of approved workplace attachment as part of the qualification, however, it is only at BIUST where this is credit bearing i.e. credits contributing to the credits required in the course. The workplace attachment at UCT and UQ is part of requirements for professional accreditation, not as part of core curriculum. UB-UK offers the standard 3 year BEng with an option to do 1 year industrial training for the BEng (Chemical Engineering) with Industrial Study. This qualification provides for a semester of industrial attachment which carries 36 credits. Thus, all qualifications focus on producing graduates that are ready for work in industry.

All the qualifications also require that students complete a certain number of credits in complementary studies outside the domain of engineering e.g. sociology, languages, economics, management etc. The credits allocated to these subjects is much lower at BIUST and it is not mandatory to do a language course, as in other institutions, but the student is allowed to choose from a pool of available electives. The other institutions seems to have a very strong emphasis on international student exchange programs that promote exposure of students to other languages and culture which is not currently the case with this qualification.

REVIEW PERIOD

The review period for this qualification is 5 years.

01/07-06-2018 Page 12 of 12