

DNCQF.FDMD.GD04 Issue No.: 01

QUALIFICATION SPECIFICATION								
SECTION A								
QUALIFICATION DEVELOPER New Era College of Arts, Science and Technology								
TITLE	Diplom	ploma in Computer Engineering NCQF LEVEL				6		
FIELD	Manuf Techn	facturing, Engineering and nology SUB-FIELD Computer				outer Engineering		
NEW QUALIFICATION ✓ REVIEW OF EXISTING QUALIFICATION				N				
SUB-FRAMEWORK General			Education		TVET	✓	Higher Education	
QUALIFICATION TYPE Certific		Certifica	ite		Diploma	✓	Bachelor	
			r Honours Master			Doctor		
CREDIT VALUE 262					262			

RATIONALE AND PURPOSE OF THE QUALIFICATION

RATIONALE:

1 The requirement for developing this qualification emanated from a labour market survey done by HRDC the nation's human resource development agency which identified the need for computer technicians who are able to provide broad solutions and services through analysis, design, evaluation, implementation, deployment and coordination of problems and services needed in the domain of computer engineering according to the Human Resource Development Council (HRDC) Top 20 Occupation report, (HRDC Top 202 occupations, 2016). The report highlighted the need for Computer Technician graduates for the ICT industry in Botswana who have the requisite and broad knowledge in the field of computer engineering with capacity to critically think and reflect analytical in the tasks undertaken in the field of computer engineering. The computer engineering technician graduate should also be compounded with skills and competences that enable them to resolve technical and engineering challenges through extensive consultation with relevant stakeholders. The computer engineering technician graduate shall demonstrate the capacity to be innovative and creative in the context of the field of computer engineering and be ethically professional and capacity build to higher levels of learning. In summary the computer engineering technician graduate shall be able to demonstrate competencies like analysis, design, implementation, testing and maintenance of any technical and engineering oriented challenge and also blend with integration and facilitations skills as commended by many Engineering Institutions like Botswana Institute of Engineers, Engineering

01/10-01-2018 Page 1 of 14

DNCQF.FDMD.GD04 Issue No.: 01

Council of Southern Africa (ECSA). The following **national strategic plans and policies** underpins the development of computer engineering skills in Botswana:

- 1.1 Computer engineering skills set are needed as informed by the Botswana National Strategic Development Plans 9, 10 and 11 (NSDP) and the Vision 2036 plan because they create an ICT environment which provides a much needed atmosphere for the Botswana economy to prosper. Computer engineering skills will ensure an unfettered access and ease of flow of information through modern technology and will attract big companies to invest into Botswana resulting in job creation, income generation and asset base expansion (Botswana Mid-Term Review NDP10, P.48 & P.49, 2013).
- 1.2 Botswana's National ICT Policy, dubbed the Maitlamo ICT Policy states that the National ICT Policy will position Botswana for sustained growth in the digital age. ICT technology will serve as a key catalyst in achieving social, economic, political and cultural transformation within Botswana therefore realize a Botswana knowledgeable economy and information society. However this drive requires the infusion of skills like computer engineering which basically provide the ICT expertise for sustenance and creation of an information society with ICTs like Homes and community, Healthcare, Learning, Government, Infrastructure, Marketplace (p.3) according to the target of the Maitlamo ICT policy.
- 1.3 The National Development Plan 11 (2011-2016) clearly makes explicit the need for manpower development for ICT skills in Computer engineering and enlightens that "... training of ICT personnel will continue to be accorded priority in order to enhance the sector's contribution to economic and export diversification, as well as the creation of high quality jobs."(p.80) and this strategic intuition is further confirmed by HRDC's Top 20 occupation of priority in the sector of Information and Communication Technology by the (HRDC TOP OCCUPATIONS IN HIGH DEMAND report, December 2016) that Computer engineering graduates with this skills are needed.
- 1.4 Botswana Vision 2036 strategic plan spells out ICT as a critical service sector which is contributing to the country's GDP and employment creation and graduates with Computer engineering skills are playing a critical role in ensuring development and availability of computer systems and their

01/11-01-2018 Page 2 of 14

DNCQF.FDMD.GD04 Issue No.: 01

maintenance, sourcing and management to service key sectors like tourism, agriculture, mining and others. Vision 2036 strategic plans clearly specifies that "...ICT sector contributes significantly to the economy...efficient enabler of product and service delivery across all economic sectors in the delivery of government services" (p.27)

In summary Computer engineering skills have been identified and justified by the Botswana industry as further qualified and justified by the Human Resource Development Council (HRDC) top priority occupations for industry of Botswana. In summary Computer Engineering has been clearly stated as a Top 20 occupation of priority in the sector of Information and Communication Technology by the HRDC TOP OCCUPATIONS IN HIGH DEMAND report (December 2016).

PURPOSE:

The purpose of the Qualification in Computer Engineering is to produce people with advanced knowledge, skills and competencies to:

- Execute ICT industrial tasks related to analysis, design, implementation, deployment and maintenance of computer technology equipment and infrastructure using techniques, theories and methodologies of computer engineering.
- Take responsibility and accountability of work done in a computer engineering or multipurpose project.
- Perform system simulation, modelling, and technical documentation when solving industrial problems.
- Track costs associated with project design and part procurement for computer system design.
- Observe the ethical and professional codes of the ICT industry.
- Collaborate with other engineers of various disciplines towards solving complex engineering issues.

ENTRY REQUIREMENTS (including access and inclusion)

- 2.1 Entry Requirements:
- 2.1.1 Minimum entry requirements
 - Certificate IV, NCQF Level 4 (BGCSE or equivalent).
- 2.1.2 Recognition of Prior Learning (RPL) and Credit Accumulation and Transfer (CAT)
 An applicant who does not meet minimum entry requirements stated above may be considered on RPL and CAT in line with the relevant ETP and national policies.

01/11-01-2018 Page 3 of 14

DNCQF.FDMD.GD04 Issue No.: 01

QUALIFICATION SPECIFICATION						
SECTION B						
GRADUATE PROFILE (LEARNING	ASSESSMENT CRITERIA					
OUTCOMES)						
3.1 Formulate computer system solutions in	1.1.1	Apply mathematics and science concepts for analysis				
context of people, knowledge,		and design for computer software, hardware and				
technologies and in the field of computer		systems.				
engineering	1.1.2	Design computer systems that would solve and fit				
		within a composite project which would require				
		computer engineering solutions.				
	1.1.3	Install a computer system based on clientele design				
		specifications from software, hardware and network				
		perspective				
	1.1.4	Deploy and commission computer systems for various				
		industrial and engineering functions.				
	1.1.5	Document commissioned computer system for future				
		reference and maintenance.				
3.2 Design computer system which are	3.2.1	Develop according to software to create computer				
based on software, hardware and		systems models for specified clientele requests				
networking technologies for commercial,	3.2.2	Evaluate relevant hardware, software and network				
industrial, medical, military, or scientific		components for creating computer systems.				
applications and evaluate their	3.2.3	Maintain and configure a computer system based on				
performance.		a designed model.				
	3.2.4	Modify and upgrade computer based on new				
		industrial requirements				
	3.2.5	Communicate and inform on needed computer				
		system functionality using models.				
3.3 Justify maintenance and testing tools for	3.3.1	Identify appropriate tools for analysis and maintenance				
use during systematic maintenance,		of computer systems.				
calibration and measuring of computer						

01/11-01-2018 Page 4 of 14

DNCQF.FDMD.GD04 Issue No.: 01

systems for industrial and engineering	3.3.2	Calibrate measuring and testing tools for up keeping
applications		computer equipment in workshop.
	3.3.3	Monitor computer system operation and optimise its
		operation by adjusting and setting relevant operational
		parameters using provided standards
	3.3.4	Compute statistical functional elements of a computer
		system and report on operational status and
		recommend any modifications.
	3.3.5	Simulate functional operation of deployed computer
		systems and note discrepancies for purposes of
		maintenance and calibration
	3.3.6	Evaluate all testing and measuring equipment for
		electrical and electronic maintenance.
	3.3.7	Select appropriate and relevant electrical and
		electronic measuring equipment for maintain computer
		systems.
	3.3.8	Apply key functional skills in electronics and electrical
		engineering to test and measure Electrical & Electronic
		equipment
	3.3.9	Interpret electronic and electrical values in measuring
		and measurement of Electrical & Electronic equipment
	3.3.10	Service Electrical & Electronic equipment using
		electronic and electrical datasheets for replacement of
		components and devices.
3.4 Develop software for computer systems	3.4.1	Develop software codes or software patches to
and test their functionality based on		upgrade functionality of computer system functionality.
industrial specifications and	3.4.2	Upgrade installed software in computer systems for
requirements.		enhanced functionality.
	3.4.3	Install and configure using software computer systems
		parts from different vendors or the same manufacturer
		to build a functional computer system for a given
		industrial task

01/11-01-2018 Page 5 of 14

DNCQF.FDMD.GD04 Issue No.: 01

	3.4.4	Trouble shoot complex computers systems using
		intelligent devices
	3.4.5	Interpret and maintain complex computer systems
		using auto generated reports from intelligent
		monitoring devices
3.5 Troubleshoot computer systems	3.5.1	Evaluate different networking topologies to effectively
network using networking and		network given computer systems for purposes of
telecommunications concepts to attain		resources sharing and interchange based on clientele
integrated system functionality with		requirements.
shared resources for industrial purposes.	3.5.2	Infuse network and telecommunication technologies to
		geographical integrate computers systems spatially
		located.
	3.5.3	Test functionality and optimisation of networked
		systems for further improvement.
	3.5.4	interpret recorded operational parameters of
		networked computers systems to make informed
		decisions on expansion and upgrading
	3.5.5	Monitor functionality of networked computers systems
		and communicate the operational status of the
		systems.
3.6 Communicate on possible	3.6.1	Work in group by practicing all facets of communication
knowledge in deriving models for computer		like negotiation, listening and presenting skills
by applying complex numerical, scientific	3.6.2	Convey project objectives and schedule along with
and engineering models.		updates to business teams
	3.6.3	Utilize different tools for creating software project
		reports or documents such as Word Processors, Excel,
		Unified Modelling Language and PowerPoint, Project
		Management Software, Visio etc.
3.7 Register with practicing regulatory	3.7.1	Practice professional ethics in discipline and register
authorities in computer engineering field	3.7.2	Create conscience in ethical practice and liaise with
for purpose of professional practice.		subordinates

01/11-01-2018 Page 6 of 14

DNCQF.FDMD.GD04 Issue No.: 01

	3.7.3	Apply principles of ethical and professional practice in
		conducting E&E engineering activities in particularly
		when dealing with different clients
	3.7.4	Sensitize and respect cultural norms of various eco
		systems related to area of occupation and location
	3.7.5	Abide to legal statues to guide the operations and
		conduct of E&E engineering duties in any given
		context.
	3.7.6	Respect and honour working relationships od
		subordinates and superiors to maintain good working
		relationships in any give working environment

QUALIFICATION STRUCTURE							
SECTION C							
FUNDAMENTAL	Title	Level	Credits				
COMPONENT	Introduction to Computing		12				
Subjects / Units /	Computer Engineering	5	24				
Modules	Computer Architecture	5	12				
/Courses	Computer Aromitecture	5	12				
CORE	Electrical & Electronics Engineering courses	6	12				
COMPONENT	Systems & Hardware						
Subjects / Units /	Hardware & Embedded Systems	6	48				
Modules	Parallel and Distributed Computer system						
/Courses	Courses Engineering Mathematics		8				
	Lingineering Mathematics	6	24				
	Engineering Science		8				
	Linging Colonic	6	20				
	Information and Communication Technology	6	12				

01/11-01-2018 Page 7 of 14

DNCQF.FDMD.GD04 Issue No.: 01

Data Algorithms Digital Computer Programming Computer Programming		6	24
	Professional Practice	7	8
	Engineering Ethics	6	30
	Industrial Attachment	7	12
ELECTIVE COMPONENT Subjects / Units /	Network Security (Systems & Networks)	7	8
Modules /Courses	Real time Systems (Advanced Hardware & Embedded Systems)	7	8

Rules of combinations, Credit distribution (where applicable):

Credit Distribution is defined by the following table:

Credit distribution rules for the qualification are defined in relation to the relevant **NCQF level 6 and constituent NCQF** level descriptors below. The qualification in Computer Engineering credits are determined in line with qualifications structure to derive the credits required which is **262** credits.

Qualification Combination Rules Based on Module Status per NCQF designation of:

Fundamental, Core & Electives

■ Fundamental Level 5 48 Credits

Core Level 6 186 CreditsCore Level 7 20 Credits

■ Elective Level 7 8 Credits (Students choose 1)

Total 262 Credits

01/11-01-2018 Page 8 of 14

DNCQF.FDMD.GD04 Issue No.: 01

ASSESSMENT AND MODERATION ARRANGEMENTS

Assessment Arrangements

Learners shall be evaluated based on summative evaluation approach which considers attainment of qualification learning outcomes. The formative evaluation approach which has also considers attainment of modules learning outcomes.

Formative and Summative Assessment Weightings

Formative assessment or continuous assessment contribute to 40% of the final grade.

The summative assessment contribute to 60% of the final grade.

Moderation.

There is provision for internal and external moderation as a quality assurance measure.

Assessors and Moderators must be suitably qualified and experienced subject matter experts and they should also be registered with BQA as Assessors and/or moderators.

RECOGNITION OF PRIOR LEARNING (if applicable)

Recognition of Prior Learning (RPL)

1. RPL and CAT will be applicable for award of this qualification or credits towards award of part qualifications thereof.

PROGRESSION PATHWAYS (LEARNING AND EMPLOYMENT)

Learning Pathways

Horizontal articulation of the qualification (NCQF Level 6)

- Diploma in Electronics Engineering
- Diploma in Telecommunications Engineering
- Diploma in Electrical and Electronics Engineering
- Diploma in Networking Engineering
- Diploma in Software Engineering

01/11-01-2018 Page 9 of 14

DNCQF.FDMD.GD04 Issue No.: 01

Vertical articulation of the qualification (NCQF Level 7)

- Bachelor of Engineering in Electronics Engineering
- Bachelor of Engineering in Telecommunications Engineering
- Bachelor of Engineering in Electrical and Electronics Engineering
- Bachelor of Engineering in Networking Engineering
- Bachelor of Engineering in Software Engineering

Employment Pathways

Graduates of the programme may find employment in a range of public and private organisations for the following posts.

Typical roles include in Computer Engineering domains and those related as

- Computer Assistant Engineer,
- Computer Technician,
- Computer Engineering Consultant,
- Computer Salesperson
- Computer Marketing Person
- Computer Engineering Teacher
- Hardware Technician
- System Technician
- Software Technician
- Network Technician

QUALIFICATION AWARD AND CERTIFICATION

To be awarded a **Diploma in Computer Engineering**, a candidate must attain 262 credits and satisfy the rules of combination prescribed above.

01/11-01-2018 Page 10 of 14

DNCQF.FDMD.GD04 Issue No.: 01

REGIONAL AND INTERNATIONAL COMPARABILITY

Summary of Benchmarking with other Institutions

Table: Benchmarking of Diploma in Computer Engineering with Other University /Colleges Institutions

184 Credit Hour	480 credits 480 credits 10 Notional hrs. 10 Notional hrs. /Credit /Credit
Objective Based Qualification	Learning Learning Outcome Based Outcome Based Qualification Qualification
 Electrical Electronics Computing Prof Practice Math Eng. Telecommunication 	 Electrical Electronics Computing Prof Practice Math Eng. Electronics Computing Prof Practice Math Eng.
 Laboratory Practical's Group Work Examination Test 	 Test Laboratory Assignments Final Group Work Examination Continues Test Evaluation Projects

Regional comparability : Similarity, Differences

Similarities

All qualifications cover almost all knowledge areas in the domain of computer engineering

01/11-01-2018 Page 11 of 14

DNCQF.FDMD.GD04 Issue No.: 01

Fair distribution of learning outcome based and objective learning based

Differences

- Not all diploma qualification use the notional 10 hour learning
- The total credits awarded at the completion of the qualification are different

Contextualization

The qualification is contextualised by benchmarking the areas stated above and as follows

• The qualification shall adopt the qualifications learning outcome like a majority of the universities and this in line with the BQA NCQF.

Generalisation

The qualification based on the similarities and minor differences determined it is portable and generalizable within the regional Universities.

International comparability: Portability Generalisation of the Programme

Learning Outcome	Objective	Learning Outcome	Objective Based
Based Approach	Based Outcome	Based Approach	Outcome
■ Electrical	Electrical	Electrical	Electrical
Electronics	Electronics	Electronics	Electronics
Computing	■ Eng. Science	Computing	Computing
Prof Practice	Computing	Prof Practice	Prof Practice
■ Math Eng.	Prof Practice	■ Math Eng.	■ Math Eng.
■ Eng. Science	■ Math Eng.	■ Eng. Science	■ Eng. Science
 Artificial Intelligence 	Linguistics		

01/11-01-2018 Page 12 of 14

DNCQF.FDMD.GD04 Issue No.: 01

Research Project	Experiments	Laboratory	Laboratory
Listening	■ Lab	■ Practical's	■ Practical's
Assessment	Assessments	■ Group Work	■ Group Work
Presentation	■ Midterm –Test	Examination	Examination
■ Final Examination	Examination	■ Test	■ Test
■ Individual	■ Report		
Presentation	Presentation		
	Attendance		

International comparability: Similarity, Differences, Portability and Generalisation.

Similarities

- All qualification emphasizes on learning outcome based approach.
- All qualifications offer similar knowledge areas
- The National Qualification Level is a diploma.
- Majority of qualifications use the learning outcome based approach

Differences

- Not all computer engineering qualification use the notional 10 hour learning to calculate credits
- The total credits awarded at the completion of the qualification are different because of the credit framework used

Contextualization

The qualification is contextualised by benchmarking the areas stated above and as follows

- The National Qualification Level shall be diploma
- The qualification shall adopt the qualifications learning outcome like a majority of the universities and this in line with the BQA NCQF.

Generalisation

The qualification based on the similarities and minor differences determined it is portable and generalizable within the international Universities.

REVIEW PERIOD

Every after 5 years in line with the NCQF.

01/11-01-2018 Page 13 of 14

DNCQF.FDMD.GD04 Issue No.: 01

01/11-01-2018 Page 14 of 14